Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release.
نویسندگان
چکیده
Neurons express a variety of plasma-membrane potassium channels that play important roles in regulating neuronal excitability and synaptic transmission, but also contain mitochondrial ATP-sensitive potassium channels, the functions of which are unknown. Studies of cardiac cells suggest that similar mitochondrial ATP-sensitive potassium channels are involved in the process of ischemic preconditioning, suggesting a role in regulating cell survival. The authors report that mice given diazoxide, an activator of mitochondrial ATP-sensitive potassium channels, exhibited a large (60% to 70%) decrease in cortical infarct size after permanent occlusion of the middle cerebral artery. Diazoxide decreases neuronal apoptosis and increases astrocyte survival and activation in the penumbral region of the ischemic cortex. The neuroprotective effect of diazoxide is abolished by 5-hydroxydecanoate, a selective antagonist of mitochondrial ATP-sensitive potassium channels. Studies of cultured hippocampal neurons reveal that diazoxide depolarizes mitochondria, prevents cytochrome c release, and protects cells against death induced by staurosporine and chemical hypoxia. Diazoxide increased the levels of Bcl2 and inhibited the association of Bax with mitochondria in neurons exposed to an apoptotic insult, suggesting that activation of mitochondrial ATP-sensitive potassium channels may stabilize mitochondrial function by differentially modulating proapoptotic and antiapoptotic proteins. Collectively, the data suggest that mitochondrial ATP-sensitive potassium channels play a key role in modulating neuronal survival under ischemic conditions, and identify agents that activate mitochondrial ATP-sensitive potassium channels as potential therapeutics for stroke and related neurodegenerative conditions.
منابع مشابه
Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression
Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...
متن کاملATP-dependent potassium channels are implicated in simvastatin pretreatment-induced inhibition of apoptotic cell death after renal ischemia/reperfusion injury
Background: Simvastatin is a widely used medication in cardiac care. Here we evaluate the role of ATP sensitive potassium (KATP) channels in simvastatin induced renal protection after renal ischemia/reperfusion (I/R) injury. Methods: A total of 81 male Wistar rats, were treated with simvastatin (10 and 20mg/kg/day gavage, one week). Some groups received glibenclami...
متن کاملProtein kinase C-dependent mitochondrial translocation of proapoptotic protein Bax on activation of inducible nitric-oxide synthase in rostral ventrolateral medulla mediates cardiovascular depression during experimental endotoxemia.
Sympathetic premotor neurons for the maintenance of vasomotor tone are located in rostral ventrolateral medulla (RVLM). We demonstrated previously that overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in RVLM, leading to caspase 3-dependent apoptotic cell death, plays a pivotal role in cardiovascular depression during endotoxemia induced by intravenous administration of Esche...
متن کاملMitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells.
Mitochondria can either enhance or suppress cell death. Cytochrome c release from mitochondria and depolarization of the mitochondrial membrane potential (DeltaPsi) are crucial events in triggering apoptosis. In contrast, activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels prevents lethal ischemic injury in vivo, implicating these channels as key players in the process of ...
متن کاملApoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation.
Myocardial ischemia/reperfusion (I/R) is associated with an extensive loss of myocardial cells. The apoptosis repressor with caspase recruitment domain (ARC) is a protein that is highly expressed in heart and skeletal muscle and has been demonstrated to protect the heart against I/R injury (Gustafsson, A. B., Sayen, M. R., Williams, S. D., Crow, M. T., and Gottlieb, R. A. (2002) Circulation 106...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2002